Source of methane and methods to control its formation in single chamber microbial electrolysis cells
نویسندگان
چکیده
Methane production occurs during hydrogen gas generation in microbial electrolysis cells (MECs), particularly when single chamber systems are used which do not keep gases, generated at the cathode, separate from the anode. Few studies have examined the factors contributing to methane gas generation or the main pathway in MECs. It is shown here that methane generation is primarily associated with current generation and hydrogenotrophic methanogenesis and not substrate (acetate). Little methane gas was generated in the initial reaction time (<12 h) in a fed batch MEC when acetate concentrations were high. Most methane was produced at the end of a batch cycle when hydrogen and carbon dioxide gases were present at the greatest concentrations. Increasing the cycle time from 24 to 72 h resulted in complete consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied voltages reduced methane production. Little methane (<4%) accumulated in the gas phase at an applied voltage of 0.6–0.9 V over a typical 24 h cycle. However, when the applied voltage was decreased to 0.4 V, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times. The lack of significant hydrogen production from acetate was also supported by Coulombic efficiencies that were all around 90%, indicating electron flow was not altered by changes in methane production. These results demonstrate that methane production in single chamber MECs is primarily associated with current generation and hydrogen gas production, and not acetoclastic methanogenesis. Methane generation will therefore be difficult to control in mixed culture MECs that produce high concentrations of hydrogen gas. By keeping cycle times short, and using higher applied voltages ( 0.6 V), it is possible to reduce methane gas concentrations (<4%) but not eliminate methanogenesis in MECs. a 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights
منابع مشابه
The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)
Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...
متن کاملBio‐Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane
We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2 . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are ...
متن کاملModeling of Multi-population Microbial Fuel and Electrolysis Cells Based on the Bioanode Potential Conditions
Microbial fuel cell and microbial electrolysis cell are two major types of microbial electrochemical cells. In the present study, we governed modeling of these systems by concentrating on the simulation of bioelectrochemical reactions in both biofilm and anolyte and considering the effect of pH on the microbial growth. The simulation of microbial fuel and electrolysis cells can be described by ...
متن کاملDirect biological conversion of electrical current into methane by electromethanogenesis.
New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical production. Here we demonstrate that methane can directly be produced using a biocathode containing methanogens in electrochemical systems (abiotic anode) or microbial electrolysis cells (MECs; biotic anode) by a process called electromethanogenesis. At a ...
متن کاملHydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
Hydrogen gas can be produced by electrohydrogenesis in microbial electrolysis cells (MECs) at greater yields than fermentation and at greater energy efficiencies than water electrolysis. It has been assumed that a membrane is needed in an MEC to avoid hydrogen losses due to bacterial consumption of the product gas. However, high cathodic hydrogen recoveries (78 +/- 1% to 96 +/- 1%) were achieve...
متن کامل